Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 30, 2026
-
Wong, A (Ed.)Abstract We present the first chromosome-level genome assembly and annotation for the genus Cuscuta, a twining and leafless parasitic plant of the morning glory family (Convolvulaceae). C. campestris, the study species, is a widely studied model parasite, due in part to its worldwide occurrence as a weed of agricultural and natural plant communities. The species has served as a model parasite for studies of parasite biology, haustorium development, growth responses to chemical and light stimuli, gene content and expression, horizontal gene transfer, and interspecies RNA movement and has a recently developed transformation system. The 505 Mb (1C) genome is assembled into 31 chromosomes and supports annotation of 47,199 protein-coding genes, 214 small RNA loci (including 146 haustoria-specific miRNAs), and 3,238 interspecies mobile mRNA loci. C. campestris is a recent tetraploid with a high retention of duplicated genes and chromosomes, with less than 8% nucleotide divergence between homoeologous chromosomes. We also show that transformation of C. campestris with the RUBY marker system allows visualization of transformed Cuscuta-derived fluorescent mobile molecules that have entered the host stem. This genome, with an associated genome browser and BLAST server, will be of value for scientists performing fundamental research in a wide range of molecular, developmental, population, and evolutionary biology, as well as serve as a research tool for studying interspecies mobile molecules, generating genetic markers for species and genotype identification, and developing highly specific herbicides.more » « lessFree, publicly-accessible full text available August 20, 2026
-
Free, publicly-accessible full text available June 8, 2026
-
Free, publicly-accessible full text available June 8, 2026
-
Abstract High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF’s physics potential.more » « less
An official website of the United States government
